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Abstract

Lockheed Martin InVision provides software renovation and sustainment ser-
vices, including analyzing systems for “interesting features,” transforming sys-
tems to new environments, and recasting systems to new architectures and
languages. We seek an optimal blend of effort by automating the straightfor-
ward parts of a reengineering task under human control. We achieve this
automation through a judicious combination of artificial intelligence and com-
piler-compiler techniques. This paper describes the InVision tool set and
reengineering process and presents some examples of the applications of this
technology.

1. Introduction

Every software manager knows better than to lightly discard an existing soft-
ware system. Such systems not only form the backbone of existing enterprises,
but also embody critical knowledge about the actual processes of an applica-
tion or organization. Legacy software is an asset. On the other hand, new oper-
ating conditions, new markets and emerging technologies are tempting occa-
sions for improvement. These opportunities motivate modernizing software
from out-of-date hardware to contemporary processors; from ancient or ob-
scure languages, databases, and interfaces to current standards; and from cen-
tralized, closed systems to modern distributed, enterprise-wide open architec-
tures. Software managers face the problems of preserving existing software as-
sets and ensuring the continuing smooth operation of the organization while
nevertheless responding to new requirements and taking advantage of emerg-
ing capabilities.

Modernization possibilities include buying commercial, off-the-shelf
(COTS) software to provide a particular function (and then integrating it into
the existing environment), redeveloping a system from scratch, or renovating
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(reengineering) an existing system to conform to new requirements. Each of
these has its advantages and disadvantages. COTS software, if available, af-
fordable, and appropriate can be a straightforward modernization technique.
However, rarely are all these criteria met. Redevelopment offers the opportu-
nity to radically update functionality, with concomitant high expense and risk.
Reengineering seeks to take advantage of the knowledge embodied in existing
systems to economically and reliably achieve modernization. (In practice, most
projects use a hybrid approach, employing appropriate COTS components
when available, redeveloping systems that require radical change, and re-
working the rest.)

Lockheed Martin InVision provides software reengineering services to
commercial organizations, to the government and government contractors, and
within Lockheed Martin. These services include analyzing systems for “inter-
esting features,” transforming systems to new environments, and recasting
systems to new architectures and languages. InVision seeks an optimal blend of
effort by automating the straightforward parts of reengineering under human
guidance and control. (The computer system thus acts as an “apprentice” to the
human expert.) This combination of human domain understanding with com-
puter attention to detail produces an overall superior reengineering result. In-
Vision achieves this optimum by (1) developing and acquiring a collection of
tools for the flexible analysis and transformation of existing systems, and (2)
providing these tools to engineers skilled in the tool operation and modifica-
tion, and knowledgeable in the source-and-target languages and environments.
Artificial intelligence techniques and mechanisms play a prominent role in In-
Vision’s tool set.

This paper describes the InVision tool set and some of the applications it has
enabled. Section 2 describes some of the uses of software renovation tech-
niques. In Section 3, we turn to describing our tools and their use. We have ap-
plied our tools to a variety of applications, spanning tasks in program analysis
and transformation. Section 4 presents a more detailed discussion of several
renovation projects and research efforts. We briefly compare this work with
other software reengineering efforts in Section 5. We close with a few remarks
on the nature of semi-automated software reengineering.

2. Uses of Software Renovation

Broadly, software renovation can be used for analysis and transformation.
Analysis describes the state of an existing software system. This information
can be applied to maintenance, migration, and/or later transformation. The
output of analysis can range from a static set of text reports, to node and edge
graphs and on through an interactive query/browsing tools. Transformation is
the process of modifying an existing system to meet the demands of a changing
environment. The output of transformation is the original program rephrased
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in an alternative dialect or language, hosted on a different operating system
and/or interfaced to a different operating environment.

Examples of useful analyses include:

(1) Cross references. These include calling-trees—which program elements
invoke which other program elements, and set/use–reports—which data
locations are accessed or modified by which other components.

(2) Data and control flow. Data and control flow reports show the progres-
sion of data values or overall system control through a system. Uses of
control and data flow information include establishing the business rules
of a system, enabling restructuring of a system, anticipating the effect of
changes to data structures and values, and identifying dead (un-
reachable) code.

(3) Software metrics. Software metrics can be generated that suggest the dif-
ficulty of maintaining a particular software component.

(4) Standards violations. Legacy systems were often developed without
coding standards. Modern developers often fail to follow standards.
Violations may include use of language constructs beyond the standard
language (for example, custom extensions to FORTRAN or K&R C func-
tion declarations) or outside the stylistic standards of the organization
(for example, GOTO statements or multiple returns from a subprogram).
It is possible to analyze the program structure to determine standards
violations. Frequently, such a system can suggest or implement changes
to make the code compliant.

(5) Inventory analysis. Rarely can the owners of a large application system
identify all the source components. Reporting mechanisms can identify
missing, unreachable, or redundant modules.

(6) System dependencies. An important element of software reengineering
is identifying those places where the code invokes system-dependent
routines. Thus, in porting from one operating system to another, it may
be critical to identify calls to the first operating system's native routines.

Typical applications of program transformation include:

(1) Programming language translation. This includes moving systems from
a non-standard or moribund language (for example, Jovial or CMS2) to a
modern standard (for example, Ada), from older dialects (for example,
FORTRAN IV or COBOL68) to modern variants (for example, FORTRAN
77 or COBOL II), and from proprietary systems (for example, proprietary
4GLs) to an open environments like C and COBOL. Much of (but, for a
quality result, by no means all) such transformations can be accom-
plished automatically.
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(2) Replatforming. Often, the nominal language of a system remains the
same, while other elements of its environment (for example, hardware,
language dialect, compiler, database system, or graphic user interface)
need to be changed.

(3) Remodularization. Even systems with sound architectures erode under
the muddling force of maintenance, and not every system has had the
benefit of an architecturally organized youth. By examining the intercon-
nectivity of system components, it is possible to recommend more appro-
priate modularizations of those components. Remodularization can serve
as a prelude to programming language translation, as an appropriate or-
ganization for one language may be a poor structure for another.

(4) Generalization and reuse. Programmers often create application code in
a hurry. Near the end of a project or during maintenance, it is often more
expedient to copy and edit an old routine than to modify the original to
be more general. However, the result of compounding such behavior is
many copies of "almost the same" code in a system. Similarly, for large
systems separate component implementations often arise from a lack of
global perspective. It is possible to recognize certain kinds of redundancy
and produce a generalized, reusable version of redundant code, thereby
reducing overall system size.

(5) Uniformly insert behavior. Transformation can be used to uniformly in-
sert behaviors (for example, debugging or metering mechanisms) into a
system.

Before transformation, a skilled reengineer must analyze the system and de-
termine the most cost-effective transformation strategy. Software reengineering
projects must strike a delicate balance between the cost of developing auto-
mated tools and the cost of performing a task manually. Additional automation
is worthwhile only if its development costs can be amortized over the available
reengineering tasks. For example, developing rules for converting function
pointers in C to Ada83 requires substantial effort. (In the most general case, it
may not be possible to create a faithful rendition of every C function pointer in
Ada.) An appropriate strategy uses automation to trace through the C inven-
tory to identify function pointers and their uses, but leaves to the software
reengineer the choice of implementation mechanism in the translated program
(for example, generics or case-statements).

3. Automation

Realistic reengineering efforts must be based on actually examining the system
to be reengineered.1 For that reason, we base our tools on reading code, job

                                                
1 Though the original project may have created copious documentation, documentation lies. Because
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control language, and data definition language (and other such program de-
scriptions) into an internal representation, and then manipulating that internal
form. A knowledgeable software reengineer directs and controls this process. It
is best if the internal representation both reflects the structures and relation-
ships of the program and is amenable to facile programmatic manipulation.
Once in internal form, programs can be written to analyze and report on the
program structures, and to transform these structures (for example, a repre-
sentation of the same program in another language). These reports and trans-
formed programs can then be examined or printed out for use by software re-
engineers or for inclusion in the final system. Figure 1 illustrates this basic pro-
cess: (a) parsing to an internal representation, (b) annotating that representation
with information inferred about the program, (c) manipulating and transform-
ing that representation, and then (d) presenting the results of those ma-
nipulations and transformations.

Code

Lexer

Parser

Graph
Builder

Internal
representation

Language
Descriptions

Reporters
Browsers

Analyses

Transformers

Translations

Symbolic programming
environment

Figure 1: InVision system architecture

                                                                                                                                       
documentation effort has not tracked the system maintenance, and because the original documentation
was incorrect or incomplete, old documentation is, at best, suspect. In practice, this is often a moot
point; documentation for legacy systems is usually nonexistent.
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Our primary tool environments have been Common Lisp (Steele, 1990) and
Lisp enhanced with Refine (Reasoning Systems, 1990).2 We have augmented
those environments with both general and application-specific tools; we dis-
cuss some of those tools below. Technologically, we can be understood as com-
bining compiler-compiler algorithms (e.g., compiler-compilers, regular-
expression lexers, control and data flow) with artificial intelligence mechanisms
(symbolic representation, objects and models, multi-dimensional objective
functions and pattern-directed inference.)

3.1. Models and Grammars

In the introduction to this section, we discussed creating an internal represen-
tation of a program. The transition from program text to internal representation
has two critical components:

(1) The domain model. A domain model is a framework for representing
programs. We realize this framework as a set of class definitions. The
slots of such classes encode the subparts of the program. Such a model
recognizes the semantically common elements of the program, classifying
them in an inheritance hierarchy. Thus, a language may be built of “sen-
tences,” including both “data sentences” (declarations) and “executable
sentences” (statements). The executable sentences may divide into I/O
sentences, iteration sentences, assignment sentences, and so forth. One
seeks in this hierarchy comprehensivity (the entire language is described),
proximity (similar conceptual elements share close common ancestors)
and utility (operations can be described in relatively few places). As a
concrete complexity measure of domain models, we consider CMS-2Y.
CMS-2Y is an Algol-like language popular for U. S. Department of De-
fense applications. Our CMS-2Y domain model is eight levels deep, con-
tains 308 classes and 215 “abstract-syntax tree defining” attributes. Our
primary vehicle for expressing domain models has been the Refine object
system. We have also explored expressing models in the Common Lisp
Object System (CLOS).

(2) The parser. Program text needs to be recognized and encoded in the in-
ternal representation. This process has three critical steps: lexing (break-
ing the input into words), parsing (recognizing the sentences and parts of
speech of the input and roughly assembling them into a program repre-

                                                
2 Refine is an application development environment that extends Common Lisp with (1) a very high-

level programming language that combines imperative, functional, logic and pattern-directed pro-
gramming, (2) an object system, (3) a yacc-like system for defining the syntax of programming lan-
guages, automatically constructing LALR(1) parsers for those languages, and using those parsers to
construct object-based abstract syntax trees of programs, and (4) a GUI-builder. Reasoning Systems
also provides “language workbenches” (language models, parsers, and certain pre-defined analyses)
for Ada, C, COBOL and FORTRAN.
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sentation), and fixup (rearranging the results of parsing into a proper
model, including establishing the declarative connection between pro-
gram elements and restructuring odd organizations encumbered by par-
ticular parsing algorithms). The end-product of this process is the repre-
sentation of the program as an abstract-syntax tree (AST). Figure 2 shows
the AST representation of a parse of a (pseudo-language) conditional
statement.

B C

F

<

if   then  else

A +
Apply

:=

X

Y Z

/

:=

[     ]

A B C

X

Figure 2: An abstract syntax tree representation of
“if A < B + C then X := Y / Z else X := F (A, B, C)”

We have, by and large, used Refine for parsing and initial object construction,
including both the predefined Refine workbenches (C, COBOL, FORTRAN,
and Ada) and those additional workbenches we have constructed (for example,
Jovial J3 and J73, CMS-2M and -2Y, InfoBasic, IMS-COBOL, IBM-370 assembler,
IBM-370 JCL). Limitations in the size of system that can be accommodated by
the “in memory” Refine environment have also led us to develop tools for
transferring program representations between Refine objects and CLOS, and to
storing program representations in a CLOS-based object-oriented database
(Franz Allegrostore).
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3.2. Annotation

We observe that the abstract syntax tree (AST) created by the parsing process
approximates an appropriate internal representation for reengineering.3 How-
ever, treating the nodes of the AST as simple record structures is too confining.
Instead of tree nodes, a better representation creates objects that (1) can take ad-
ditional annotation about inferred facts about the program, (2) can be grouped
into classes and inheritance hierarchies to conveniently describe common
properties, and (3) can be objects for object-oriented programming.

Since the grammar now defines both the syntactic structures of the lan-
guage and its object classes and hierarchy, grammatical design for an object-
oriented system requires additional care. Making the class hierarchically be
semantically meaningful simplifies further processing: behaviors can be de-
fined for all elements of a class.

Having represented the program as a network of objects, we can annotate
those objects with additional information. Typical attributes include symbol-
table references (for example, variable references pointing to their declarations),
control-flow information (for example, statements pointing to those statements
that can execute immediately after them), and data-flow information (for ex-
ample, assignments pointing to those parameter and data values that went into
their computation.) We call such an annotated structure an abstract syntax graph
(ASG). As objects, the elements of the graph are amenable to object-oriented
programming.

3.3. Analysis and Transformation

The two primary ways of manipulating ASGs are rule-based and object-
oriented programming. Rules allow the straightforward description of re-
lationships among (perhaps physically distant) elements and a similarly direct
expression of what to do when discovering such relationships. However, rules
are non-deterministic; pattern-matching can be obscure, making, rule-based
systems can be difficult to debug. Object-oriented programming allows focus-
ing behavior on individual kinds of elements, thereby providing the same in-
terface to different classes of behaviors. On the other hand, it is more difficult to
describe actions that relate a collection of typed objects with object-oriented
programming. Each has its place in the reengineer’s tool kit.

Analyses and transformations generate different kinds of results. Most com-
monly, analyses produce reports. A search of the ASG determines the data for

                                                
3 Sometimes, the best structure for parsing is not precisely the best structure for reengineering. For ex-

ample, in many languages a function call with arguments is syntactically indistinguishable from an ar-
ray reference. But for much of further processing (for example, variable set/use, and tracing subpro-
gram calls) these are very different creatures. In such situations, it is useful to insert a transformational
step, either immediately after parsing or after symbol table creation, that transforms the “readily
parsed” representation to an “easily manipulated” one.
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reports. Straightforward routines can convert these to either tabular or graphi-
cal form. Program transformation produces the textual representation of a pro-
gram equivalent to the original in a different language or dialect. One way of
accomplishing this is through object-oriented programming: having the objects
of the ASG respond to messages telling them how to represent themselves in
the new language (e.g., “Yo. You, COBOL if statement. Print yourself out in
Ada.”) Alternatively, program transformation can create an AST in the target
language. This AST can be made either by transforming the source ASG or by
constructing a parallel AST. A grammar in the target language can then be "run
backwards" to print this tree in the target language. (We have found it useful to
annotate this target grammar with pretty-printing information, and have de-
veloped a pretty-printer for these annotations.) Figure 3 illustrates the abstract
syntax tree transformations performed by a rule for transforming a COBOL
multiple assignment statement to a sequence of Ada assignment statements.
Figure 4 shows the text of a rule for making the implicit length of an assembly
language instruction explicit. This rule uses the Refine grammatical pattern
language, where fragments of textual programs are combined with pattern
variables to express structure.

COBOL: MOVE 1 TO W1, W2

Ada: W1 := 1; W2 := 1;

move-

move-statement-data-

integer-

integer-val

move-statement-variable-

1

variable-

identifier-

identifier-

W1

variable-

identifier-

identifier-

W2

variable variable( )

assignment-

assignment-statement-

simple-

simple-name-

W1

assignment-statement-

integer-

integer-literal-

1

assignment-

assignment-statement-

simple-

simple-name-

W2

assignment-statement-

integer-

integer-literal-

1

Figure 3: Structural transformation from COBOL to Ada

rule make-length-explicit (x : defined-storage)
x = ‘##r BALP @n @(typ) L @l < $(exas) >’
& undefined? (l)
& typ in [’C, ’P, ’Z, ’X, ’B] % variable-length types
& exas = [exa, ..]
& len = bal-byte-length(typ, exa)
--> x = ‘##r BALP @n @(’C) L @(len) < $([]) >’

Figure 4. A rule to make the implicit length of an assembler instruction explicit.
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Building and using symbol tables provides an occasion to illustrate the use
of object-oriented programming in reengineering. We first observe that many
languages support some flavor of lexical scoping. This suggests organizing
lexical contexts in a tree-structure, starting at some (global) root and creating
child nodes at those places that allow new declarations. Finding an element in
such a structure involves searching the current leaf node, and, if not found, re-
cursively search up the tree towards the root. Languages may have other re-
strictions on symbols. Object-oriented techniques allow us to build lexical con-
texts that obey other disciplines. Second, languages typically manipulate mul-
tiple varieties of symbol tables. For example, a language may have one table for
its variables, subprograms and type identifiers and another for statement la-
bels. In such languages, it is perfectly legal to declare, say, a variable with the
same name as a label. Usage (one doesn't “go to” a variable or increment a la-
bel) clarifies which variety of symbol is being referenced.

We use the term lexical context to refer to a collection of name spaces in a
program. Given the above observation about different uses of the same name,
any given lexical context may have a number of symbol tables, one for each
name space in the programming language. We call an item in a symbol table a
symbol table entry, or s-t-e for short. The fields of an s-t-e vary among languages.
The three critical operations on lexical contexts are then:

(1) Given a symbol, a name space, and an s-t-e, add that <symbol, s-t-e> to
the appropriate name space/symbol table.

(2) Given a symbol and a name space, lookup that symbol in the appropriate
symbol table, returning the s-t-e, if any.

(3) Given a lexical context, create a child lexical context.

Object-oriented programming techniques allow us to declare a class of lexical
contexts that implement these in a particular way (e.g., lexical contexts as a
collection of symbol tables; symbol tables as hash arrays; lookup through se-
quential search up the lexical context tree). A different language specification
might suggest a different organization for lexical contexts. Providing different
method handlers permits the transparent use of alternative implementations by
the rest of the system.

We note three interesting messages for the objects of the parse graph:

(1) What new s-t-e's do you have to contribute to the symbol table?

(2) What item of the symbol table do you use?

(3) Do you create a new (child) lexical context?

Most classes of parse objects respond negatively to these questions, but certain
nodes (e.g., variable declarations, identifiers in expressions, and de-
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clare/begin/end blocks) require specialized behavior to, for example, create
and return appropriate s-t-e’s. A generalized symbol table algorithm is then:

Given an object in the parse graph, obj, and a (current) lexical context, context:

(1) Send obj a “What new s-t-e's do you create?” message. The answer should
be a set of <s-t-e, name-space> pairs. For each pair in that set,

(1a) Mark the s-t-e it as being created by this object.
(1b) Mark obj as having created this s-t-e.
(1c) Send a message to context, asking to enter this s-t-e in the appropriate

name space. For certain languages, it may be necessary for context to
merge the information of this s-t-e with that of an existing s-t-e (as, for
example, when multiple declarations build the symbolic definition of a
name). “Global” or “external” declarations may also imply adding the
information to the root symbol table, rather than the current leaf.

(2) Send obj a “What name do you use?” message. The answer should be ei-
ther “none” or an <name, name space> pair. If a pair is returned,

(2a) Ask context to look up this name in the appropriate name space, return-
ing an s-t-e. [For certain languages, (languages that declare by use) this
may imply creating and entering an s-t-e for this item.] Mark obj as using
that s-t-e.

(3) Ask obj if it creates a new context. If so, create the context, noting the cur-
rent context as its parent. Make that new context the current context.

(4) Apply this algorithm to each child of obj, using the current context
Rules and object-oriented programming provide a mechanism for taking a

program in one language and converting it to a (usually semantically equiva-
lent) program in another language. For all but the most trivial transformations,
it has been our experience that purely automatic transformation does not pro-
duce maintainable output. Quality results require the interactive involvement
of skilled software reengineers, both in the initial transformation process and in
a hand-polishing post-transformation phase. Transformation, like many real AI
applications, requires balancing a multi-valued utility function, making trade-
offs between efficiency of execution, maintainability, faithfulness to the original
source code, and fidelity to the style of the target language. Human reengineers
can choose between alternative implementations, resolve difficult cases, and
apply real-world knowledge to the reengineering process. The state of the art of
transformation systems resembles not so much the expert system, able to solve
a problem by itself as the expert’s apprentice, able to perform useful (though
often low-level and boring) work under the guidance of the skilled master. This
apprentice lacks the overall world view required for comprehensive perfor-
mance. Presently, automation can ease the task of quality program translation,
but is far from eliminating human involvement.

A concrete, low-level example may make this clearer. Given a variable dec-
laration in the language C, we may need to transform that variable to Ada83.
The simplest thing to do is to declare a corresponding variable in Ada, but that
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may not work. The C program may use the variable’s address, illegal for stack-
allocated simple Ada variables. This suggests implementing the variable as an
Ada pointer to an object allocated from the heap (and changing all non-address
uses of that variable to follow the pointer). This will always work, but intro-
duces both computational and intellectual complexity. For example, if the vari-
able is declared in a recursive subroutine, explicit allocation and deallocation
will need to be done on the Ada variable. The deallocation becomes even more
complex in the presence of exceptions, as exception handlers must be built that
handle the deallocation.  However, if the address of the variable is used only to
achieve the effect of Ada in out and out parameters (a common cliché), a better
resolution is to declare a simple variable and modify the corresponding sub-
program declarations. If the variable’s address is only occasionally used for
true pointer purposes, then the software reengineer will need to trade off
among maintainability, execution efficiency and semantic fidelity. These kinds
of transformational decisions require both a system-wide perspective on the
program and human skill and judgment.

4. Applications

We have applied our tool set and reengineering skills to several dozen applica-
tion projects. These have included projects for migrating software between
platforms, translating systems from one language to another, converting code
to support different databases or user interfaces, and creating a variety of cus-
tom system analyses. Table 1 lists a selection of these projects. Figure 5 illus-
trates the overall process of a reengineering application. We note that each
stage of the process produces useful output and that many applications do not
require following the process to the end of the diagram.
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Figure 5: The reengineering process

Of these application projects, we have selected five for detailed discussion:
standards checks, platform migration, language translation, system restructur-
ing and database conversion. These applications illustrate both the power and
variety of reengineering tasks enabled by combining symbolic program ma-
nipulations with skilled software reengineers.
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• Analyzed Ada for standards violations:

• Migrated Honeywell Fortran to generic Fortran

• Translated accounting application from COBOL to Ada

• Restructured C application

• Analyzed hierarchical DB for conversion to relational DB

• Simplified assembler to a wide-spectrum language

• Translated simulation application from C to Ada

• Translated proprietary DB system to IMS

• Restructured, Debugged, and fixed simulation software in VAX Fortran

• Analyzed COBOL RDB application with embedded DBMS code

• Analyzed embedded application VAX Fortran

• Analyzed Data General Fortran

• Translated systems software from C to Ada

• Migrated Honeywell Fortran to Silicon Graphics:

• Translated Data General Fortran to Standard C:

• Analyzed HP data processing Fortran

• Analyzed, restructured, and documented Fortran

• Restructured Jovial flight software

• Analyzed Unisys transaction-processing COBOL

• Generated documentation for C

• Analyzed flight-system CMS2-M

• Translated Jovial system to Ada
Table 1. Selection of InVision Software Reengineering Projects

4.1. Standards checks

Every sensible software development effort requires its programmers to con-
form to some coding standards. Standards help ensure code quality, prevent
the use of language constructs that can produce erroneous results and encour-
age system development in a way that minimizes maintenance costs. Typical
coding standards (for Ada) are:

• Do not compare floating-point numbers with the built-in equality opera-
tor.

• Out parameters should have values assigned to them on each and every
logical path of the subprogram.

• Avoid anonymous types
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• Eliminate unused object declarations (unused functions, procedures, and
variables).

• Use elsif whenever possible to clarify logic
• Eliminate unused with statements

Given the ASG for an Ada program, one can detect such coding standards vio-
lations by describing each violation as a pattern or program that tests for the
violation, and then traversing the ASG looking for violations. These tests can be
as simple as checking, for each instance in the class of equality tests, that its ar-
guments are not types derived from floats to as complex as processing each
control-flow path in the program, looking for unassigned out parameters. (Of
course, we are limited to checking structural properties of the code. We can
easily recognize violations of a standard forbidding GOTO statements or re-
quiring assignment to every out parameter on every path through a procedure.
We can do little with a standard of the form, “Use meaningful variable
names.”)

We applied reengineering technology to detecting and reporting on project-
specific coding standards violations for a large system. The project had 600K
LOC (lines of code) of Ada and approximately 150K LOC of FORTRAN. Man-
ual methods for auditing the code for standards conformance required 200 to
300 hours per 10K LOC module to detect violations of twelve Ada standards.
Quality assurance for the project requested our support in reducing this man-
ual effort. We customized our environment to perform the checks. This took
approximately 200 hours (including requirements definition, design, imple-
mentation, and testing). The Lockheed Martin InVision reengineering tool set
then performed the coding standards checking for all twelve violations at the
rate of 15 minutes per 10K LOC module. Program Software Quality Assurance
estimates that the tool saved $3 million in quality assurance auditing costs and
provides at least a 1000-fold productivity improvement over manual methods.

4.2. Platform migration

Lockheed Martin InVision performed a FORTRAN platform migration task,
taking FORTRAN 77 applications running on a Honeywell mainframe com-
puter to FORTRAN 77 on a Silicon Graphics (SGI) workstation. A critical point
about FORTRAN system migration is that no two FORTRAN dialects are iden-
tical. For example, every dialect seems to have its own syntactic representation
of octal and hexadecimal constants, and some contain elements far beyond the
ken of the FORTRAN standard [e.g., embedded, lexically scoped subroutines
(GTE) or recursion (Cray)]. In the case of the Honeywell to SGI migration,
Honeywell FORTRAN 77 contains constructs such as repeat statements, con-
stant statements, and multiple assignment statements. (Respectively, these
translate to do statements, parameter statements, and sequences of single as-
signment statements in SGI FORTRAN.) More critically, the word sizes of the
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two machines are different: the Honeywell is a 36-bit machine, while the SGI is
32.

An additional complication was the customer’s creation of and use of a
FORTRAN preprocessor, PREPP. PREPP supports higher-level constructs such
as begin-end blocks, logical and arithmetic case statements, and different types
of repeat blocks with associated next and break statements. Our second task
was to transform these PREPP/Honeywell systems to FORTRAN 77. We pre-
served the maintainability of the translated systems by using comments and
indentation to retain the structured appearance of the original code.

Lockheed Martin InVision created a set of customized tools to automate the
task of translating Honeywell FORTRAN to Silicon Graphics FORTRAN and
PREPP/Honeywell to a FORTRAN 77 dialect that is as platform independent
as possible. This required customizing our tools to handle both Honeywell
FORTRAN extensions and the PREPP preprocessor. We then transformed the
resulting ASGs to express either the Honeywell extensions in SGI FORTRAN or
the Honeywell/PREPP extensions in standard FORTRAN 77. For the Honey-
well to SGI systems, the next step in the transformation process is to identify
and convert the platform dependent aspects of the code. These include calls to
system routines and code dependent on the machine word size. A
PREPP/Honeywell translation requires the definition of many new statement
labels. The final step in this type of translation is eliminating the unused state-
ment labels and sequentially renumbering the remaining statement labels and
their corresponding references.

The particular conversion involved the translation of 16 Honeywell
FORTRAN systems to SGI FORTRAN 77, consisting of a total of 240K lines of
code.

4.3. Database conversion

We are currently developing a tool to aid in the conversion of hierarchical IMS
databases to relational models. In comparison with hierarchical systems, rela-
tional databases are more flexible, often more efficient, and run on significantly
less expensive hardware. We recognize, in our tool development, the critical
role databases play in modern organizations, and the need to proceed cau-
tiously in their conversion. Our first tool efforts are therefore devoted to under-
standing the organization of IMS database systems and suggesting translations,
not their automatic conversion.

Database reengineering involves three phases: translating the database
schema, converting the actual data, and reengineering the application code.
(Commercial tools are available to support, to some extent, the first two of
these. The last is the hardest, as the relational model may compel significant al-
gorithmic revision of programs. The problem is compounded by the fact that
organizations often have millions of lines of database applications.)
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Schema conversion. Straightforward conversion of IMS schema to relational
models suggests mapping IMS segments to relations and links to foreign keys.
However, such a conversion leads to inefficient applications—the system may
be expending considerable energy on preserving the order of a collection of re-
cords when no actual code is dependent on that order. Considering the actual
access patterns in the application code can produce better results. Our basic
conversion approach associates a relational table with each physical segment
type. Its columns hold the segment data and, (where appropriate) the physical
and logical parents. Pointers between segments are represented using foreign
keys. The mapping from fields to columns is complicated by IMS overlapping
and non-covering fields. Our resolution is to partition the data into non-
overlapping segments and to express actions in terms of multiple columns.

Date conversion. The primary difficulty in converting the actual data is the ne-
cessity of maintaining the proper logical parent links. The actual physical con-
version can be either through a program that calls both the IMS and relational
databases, or by encoding the IMS data in SQL statements or flat files and then
reading that data in appropriately on the target machine.

Application conversion. The most complex part of the conversion process is
converting the actual code. The translation process relies on data- and control-
flow analysis, literal propagation, cliché recognition in programming patterns,
and report generation. Recognition of IMS call patterns is needed because it is
not possible, or at least extremely inefficient, to convert individual IMS calls in
isolation. Rather, we detect certain access patterns which can be efficiently
translated as a group. Part of the difficulty in translating IMS calls in isolation
is because IMS database applications contain explicit control structures to iter-
ate through all segments matching a given query. Arbitrary statement se-
quences can be mixed in with the database iteration, obscuring the actual op-
eration. In a relational database, a single query retrieves all matching tuples.
Cursors are used to traverse the query result. Similarly, one may have to write
an explicit IMS loop to perform unitary relational operation, such as summing
the values of a field of a set of predicate-satisfying records. We have written
programs to recognize such clichés.

We use control flow analysis to build a control flow graph of IMS database
calls. Often, thousands of lines of COBOL can be reduced to less than a page of
information. Even lacking further automation, such an analysis is helpful in
maintaining the system code.

Data flow analysis determines where a particular data item is used and to
propagates static values. Determining the actual data used allows simplifying
the SQL query to ask for only that data.

Another IMS feature allows an application to sequentially traverse all data
of a database. Such traversals cannot directly be translated into SQL as each
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SQL query can only return data of a single type. Polymorphic traversals need
to be analyzed manually to determine a proper relational translation.

InVision applied the first versions of these tools in the analysis and mod-
ernization of a COBOL/IMS inventory application composed of approximately
500,000 lines of application code and 100 megabytes of data. This system and its
application are described more completely by Polak, et. al. (Polak, 1995)

4.4. Restructuring C

Software system restructuring is the process of reorganizing the architecture of
a software system to accommodate a shift in the underlying design principles.
C to Ada translation illustrates the need for performing software system re-
structuring. C systems consist of a set of independent functions and variables.
Generally, structured design principles guide the creation of C systems. On the
other hand, Ada is an object-based language with support for encapsulation,
information hiding, generic packages and subprograms. The goal of producing
maintainable Ada code requires us to restructure to-be-translated C systems to
organizations more natural for Ada.

InVision performs software system restructuring by automated tools sup-
ported by manual processes (Chu, 1992). The restructuring tool accepts a C
system (consisting of a collection of C files) as input and parses the C code to
produce an ASG. A semantic component then traverses the graph and collects
primitive structural and semantic information. This information includes: (a) all
the functions in the C system, (b) the calling relationships between these func-
tions, (c) the global variables of the system, and (d) the set-use relationships be-
tween the functions and these variables.

The overall strategy of the restructuring tool is heuristic and opportunistic.
It travels up the calling hierarchy of the C system. As it moves from some
function B to function A (when A calls B), the restructuring algorithm attempts
to include B as part of A in an abstract component. If B is called exclusively by
A, then B can become part of A. On the other hand, if B is called by some other
function C or shares global data with some function D (and hence has other
dependencies) then two choices exist: (1) B and everything it depends on (the
global data and D) can be considered to be a part of A, or (2) B can be made a
part of C. This basic principle is applied recursively to build ever larger, more
“abstract“ software components.

We applied our software restructuring tool on two projects. The first con-
sisted of 113K LOC comprising of 139 C functions. The system successfully re-
structured the system into 15 independent components (roughly the same as
subsystems), and 8 abstract data types. We used the system to restructure the C
application into six hierarchical Ada packages with four nested Ada packages.
The original C developers reviewed the output of the restructuring process and
indicated that the new structure clustered related functions and variables into
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conceptually meaningful Ada packages. The second system consisted of 13K
LOC and consisted of 177 C functions. In this system we located 7 abstract data
types and restructured the system into 15 Ada packages with 12 nested sub-
packages.

4.5. Language translation

InVision has performed several language translation projects, including con-
version of C, COBOL, Jovial, and CMS-2 to Ada; FORTRAN to C; and
FORTRAN to PL/1. Here we discuss the translation of a 50K LOC COBOL
UNISYS OS-1100 logistics system into 35K LOC, functionally equivalent Ada
system (Gray, 1995). The application was a collection of 32 independent pro-
grams melded into a distributed system over several dozen sites. Difficulties of
conversion included the use of two different communication systems, two da-
tabases, operating systems calls, overlays, and unstructured and repetitious
code.

We converted this system into 35K LOC of Ada, replacing the GOTO’s with
structured constructs, paragraphs and performs with procedures and func-
tions, introducing strong typing, and generally producing a system that (save
for some name choices) appears to have been developed originally in Ada. The
process also revealed (and fixed) several bugs in the original systems and in-
troduced a few algorithmic improvements.

This result was accomplished through a combination of automated and
manual efforts. We created a number of transformations for taking COBOL
constructs into Ada and applied these to the ASG representations of our
COBOL programs. In practice, it is not worthwhile to expend effort developing
transformations for little-used or difficult constructs. The result of the auto-
matic part of the conversion was thus a mixed COBOL–Ada program. Human
skill was then applied to complete the translation and polish the results.

We are also currently working on a research effort to convert assembly lan-
guage to high-level language (Morris, 1996). Our efforts to date have produced
a converter that has automatically reduces a certain assembly language pro-
grams to a wide-spectrum intermediate-language. Typically, the converted
programs are 30-40% of the size of the originals. The conversion process recog-
nizes clichés such as scanf, performs algebraic simplifications, resolves condi-
tion codes into real conditionals, discards assembler-specific “noise,” and in-
troduces structured constructs such as loops in place of GOTO’s. This transla-
tion process relies on techniques such as control and data flow analysis and
pattern-matching. We are continuing to work on this technology to expand the
class of simplifications it provides and the quality of output it produces.
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5. Related work

Software reengineering is where software engineering was twenty years ago:
an emerging field, with the beginnings of theory, tools and methodology. Soft-
ware reengineering draws heavily on its intellectual parents: software engi-
neering, programming languages, and processing modeling, with a bit of an
artificial intelligence influence. This paper has been about experience at apply-
ing automation to reengineering, automating various parts of the reengineering
process, and the limits of automation. (Here we echo Yu (Yu, 1991), who argues
that human expertise is critical for any but the most trivial reverse engineering
task.) Automation of reengineering has been a fertile field of research, though
the “Holy Grails” of automated program translation and understanding remain
as elusive as translation and understanding remain for natural language sys-
tems. In this section we touch upon other’s research related to the work de-
scribed above.

The most straightforward use of automation in software reengineering is for
systems to (generically) aid in the understanding of existing software. Most
work on program understanding as been at either a lexical (token or string
matching) or syntactic (parsing) level.  Relational code analyzers (e.g., The De-
pendency Analysis Toolset (Wilde, 1989), MasterScope (Teitelman, 1981),
Cscope (Steffen, 1985), AQL (Paul, 1994), and the C Information Abstraction
System (Chen, 1990; Grass, 1992)) deduce some code-level structural relation-
ships (e.g., who calls who, who sets who) from source code and provide a
queryable database of these relations. The application of Refine technology in
this respect is illustrated by Boeing’s maintenance of an on-line browser of a
200K LOC COBOL application (Newcomb, 1995a). Similar structural ideas are
shown in the work of Cross and Hendrix in visualizing the control structures of
Ada programs concurrently with their source (Cross, 1995), the MITRE assem-
bly language workbench (Roberts, 1994), and Andersen’s COBOL/SRE system
to aid in understanding COBOL systems (Ning, 1994).

While relational code analyzers capture the syntactic structure of systems,
they do not present a higher-level, conceptual view of code, systems, and ar-
chitectures. The AI approach to greater system understanding is to attempt to
recognize patterns in code (Kozaczynski, 1992; Kozaczynski, 1994; Wills, 1990;
Rich, 1990; Letovsky, 1988; Ning, 1993; Ning, 1994, Quilici, 1994). While such
systems can deal with code, they lack attachment to the modeled domain. This
theme has been explored by Biggerstaff et al. (Biggerstaff, 1994) who argue that
parsing-based technology lends itself to recognizing programming-oriented
concepts (e.g., algorithms), but that application-oriented concepts (the coupling
of the program to the domain) are inaccessible without human intervention.
The synthesis of these approaches is seen in the work of Quilici and Chin
(Quilici, 1995), where a stereotypical design element recognition phase is fol-
lowed by interactive graphical display and queries.
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The particularly applications we have considered also have parallels in the
literature. Refine-based quality assurance systems include the work of Wells et
al. (Wells, 1995) for Fortran and C, and, generically, the standards mechanism
built into Refine (Markosian, 1994a).

Database reverse engineering has been a fertile field with important eco-
nomic implications. Hainaut et al. have develop an methodology of database
reverse engineering and tools to support this methodology (Hainaut, 1993;
Hainaut, 1995). They discuss the difficulty of extracting conceptual database
descriptions from the messiness of non-toy code, and describe a transforma-
tional approach to extracting conceptual information from real programs. The
Reverse Engineering in CASE Technology method (RECAST) takes COBOL
source and deduces Structured Systems Analysis and Design Method (SSADM)
documentation (Edwards, 1993; Edwards, 1995). Yang and Bennett described a
tool that (like our IMS work) considers actual code analysis in deriving entity-
relation models from COBOL code (Yang, 1995). Jarzabek and Keam describe a
reverse engineering tool for semi-automatic, knowledge-based and incremental
reverse engineering of software, for example, extracting data models from
COBOL flat files (Jarzabek, 1995). Their works recognizes that the particular
design abstractions needed to understand a program (e.g., control flow graphs,
ASTs, calling graphs) are a function of the goals of a reengineering project.
They also describe an SQL-like query language for browsing program struc-
ture.

More popular than simple restructuring is the current attempt to recognize
the “objects” in conventional code. Choi and Scacchi (Choi 1990), Hutchens and
Basili (Hutchins, 1985) and Maarrek (Maarrek, 1988) search for subprograms
grouped by data or calls. Yeh et al. (Yeh, 1995) work from AST to infer abstract
data types structurally from C code. Newcomb and Kotik (Newcomb, 1995b)
apply a variety of structural and flow analysis techniques for object extraction
of COBOL programs. Gall and Klösch (Gall, 95) combines structural analysis
with domain data analysis to discover objects. Markosian et al. (Markosian,
1994b) describe their experience with Refine in developing tools to reverse en-
gineer COBOL applications, including the database elements.

Automatic translation from legacy languages to high-level, portable systems
remains an elusive goal. Bennett et al. (Bennett, 1992) describe the Maintainer’s
Assistant, which employs formal program transformation techniques in sup-
port of maintenance activities. Like our work on assembler, Bennett et al. report
on a system applied to the analysis of IBM 370 assembler by transformation
into a wide-spectrum intermediate language. Andrews et al. describe work on
maintaining non-syntactic, macro structures in doing a source-to-source trans-
lation from a proprietary Algol-like language to C (Andrews, 1996). One larger-
scale experiment on automated translation was performed by the Naval Sur-
face Warfare Center, Dahlgren Division (NSWCDD) (Samuel, 1995) which
compared three automatic translators for CMS-2 to Ada (Cohn, 1991; Lock,
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1994; Sampson, 1994). Within the context of legacy code modernization, Samuel
and his coauthors make a telling point: translation systems, while somewhat
useful, also required “A great deal of clean up to the produced code.” They
add, “This finding illustrated the fact that not all CMS-2 code can or should be
translated,” a simultaneous recognition of both the necessity of hybrid mod-
ernization techniques and the difficulty of translation. NSWCDD continues its
efforts to improve translation technology.

6. Closing remarks

We have described InVision, its tool set, and some of the applications enabled
by these tools. Our description has included a process of program ma-
nipulation (parsing, structural interconnection, transformation and analysis, re-
porting and printing) and software renovation. This process is relies on AI
technology and techniques. We have argued that this is an appropriate archi-
tecture for automating many of the tasks of software reengineering. We have
also presented examples of where even clever automated tools cannot produce
a high-quality reengineering result. In these situations, human intelligence is
required to examine the particulars of the situation and select or create new
structures accordingly.
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